数据分析案例--以上海二手房为例

以下文章来源于每天进步一点点2015 ,作者刘顺祥

[

每天进步一点点2015 .出版《从零开始学Python数据分析与挖掘》和《数据分析从入门到进阶》,定期与大家分享数据分析和挖掘干货,包括R语言与Python的案例实战、大数据平台架构与应用以及各种福利。欢迎大家的关注与交流,真正做到收获一点点,进步一点点!

](#)

如果你手上有一批数据,你可能应用统计学、挖掘算法、可视化方法等技术玩转你的数据,但你没有数据的时候,我该怎么玩呢?接下来就带着大家玩玩没有数据情况下的数据分析。

本文从如下几个角度详细讲解数据分析的流程:

1、数据源的获取;

2、数据探索与清洗;

3、模型构建(聚类算法和线性回归);

4、模型预测;

5、模型评估;

一、数据源的获取

正如本文的题目一样,我要分析的是上海二手房数据,我想看看哪些因素会影响房价?哪些房源可以归为一类?我该如何预测二手房的价格?可我手上没有这样的数据样本,我该如何回答上面的问题呢?

互联网时代,网络信息那么发达,信息量那么庞大,随便找点数据就够喝一壶了。前几期我们已经讲过了如何从互联网中抓取信息,采用Python这个灵活而便捷的工具完成爬虫,

当然,上海二手房的数据仍然是通过爬虫获取的,爬取的平台来自于链家,页面是这样的:

/pic/1_L16G16GxPKoNvsjbWib9zkBUCsCE7g.png

我所需要抓取下来的数据就是红框中的内容,即上海各个区域下每套二手房的小区名称、户型、面积、所属区域、楼层、朝向、售价及单价。先截几张Python爬虫的代码,源代码和数据分析代码写在文后的链接中,如需下载可以到指定的百度云盘链接中下载。

/pic/2_KDWoXtCJd3xibJyiawF68XiarvKicw.png

上面图中的代码是构造所有需要爬虫的链接。

/pic/3_oB2rUjztyAFMbSCOicHVRUwWib3AAg.png
上面图中的代码是爬取指定字段的内容。

爬下来的数据是长这样的(总共28000多套二手房):

/pic/4_LE2vU3zSkE4d29UnSRyMjLiaQjkJ1A.png

二、数据探索与清洗(一下均以R语言实现)

当数据抓下来后,按照惯例,需要对数据做一个探索性分析,即了解我的数据都长成什么样子。

1、户型分布

library(ggplot2)

type_freq <- data.frame(table(house$户型))

type_p <- ggplot(data = type_freq, mapping = aes(x = reorder(Var1, -Freq),y = Freq)) + geom_bar(stat = ‘identity’, fill = ‘steelblue’) + theme(axis.text.x = element_text(angle = 30, vjust = 0.5)) + xlab(‘户型’) + ylab(‘套数’)

type_p

/pic/5_6hicQ0wBY5diaWTFruwW8dZg7Hricw.png
我们发现只有少数几种的户型数量比较多,其余的都非常少,明显属于长尾分布类型(严重偏态),所以,考虑将1000套一下的户型统统归为一类。

type <- c(‘2室2厅’,‘2室1厅’,‘3室2厅’,‘1室1厅’,‘3室1厅’,‘4室2厅’,‘1室0厅’,‘2室0厅’)

house$type.new <- ifelse(house$户型 %in% type, house$户型,‘其他’)

type_freq <- data.frame(table(house$type.new))

type_p <- ggplot(data = type_freq, mapping = aes(x = reorder(Var1, -Freq),y = Freq)) + geom_bar(stat = ‘identity’, fill = ‘steelblue’) + theme(axis.text.x = element_text(angle = 30, vjust = 0.5)) + xlab(‘户型’) + ylab(‘套数’)

type_p

/pic/6_LSn991KXPgGUOrf1lVmib5eB9hsGaA.png

2、二手房的面积和房价的分布

norm.test(house$面积)

/pic/7_CyUxJVrrl2bdiaOIqCYjX9nBv2qicg.png

norm.test(house$价格.W.)

/pic/8_XDd0Unu8dg44yE3J9YGYb0LYWkMwmA.png
上面的norm.test函数是我自定义的函数,函数代码也在下文的链接中,可自行下载。从上图可知,二手房的面积和价格均不满足正态分布,那么就不能直接对这样的数据进行方差分析或构建线性回归模型,因为这两种统计方法,都要求正态性分布的前提假设,后面我们会将讲解如何处理这样的问题。

3、二手房的楼层分布

原始数据中关于楼层这一变量,总共有151种水平,如地上5层、低区/6层、中区/11层、高区/40层等,我们觉得有必要将这151种水平设置为低区、中区和高区三种水平,这样做有助于后面建模的需要。

house$floow <- ifelse(substring(house$楼层,1,2) %in% c(‘低区’,‘中区’,‘高区’), substring(house$楼层,1,2),‘低区’)

percent <- paste(round(prop.table(table(house$floow))*100,2),'%',sep = ‘')

df <- data.frame(table(house$floow))

df <- cbind(df, percent)

df

/pic/9_aEdpdSWdQWWuLCoiaibbFB4GfT6zEg.png
可见,三种楼层的分布大体相当,最多的为高区,占了36.1%。

4、上海各地区二手房的均价

avg_price <- aggregate(house$单价.平方米., by = list(house$区域), mean)

p <- ggplot(data = avg_price, mapping = aes(x = reorder(Group.1, -x), y = x, group = 1)) + geom_area(fill = ‘lightgreen’) + geom_line(colour = ‘steelblue’, size = 2) + geom_point() + xlab('') + ylab(‘均价’)

p

/pic/10_XvicWqhN0CelcymahuZzz87SbfmM6A.png
很明显,上海二手房价格最高的三个地区为:静安、黄埔和徐汇,均价都在7.5W以上,价格最低的三个地区为:崇明、金山和奉贤。

5、房屋建筑时间缺失严重

/pic/11_lrOnWtlfM1XztMxCBuWBhsGUAGs6HQ.png
建筑时间这个变量有6216个缺失,占了总样本的22%。虽然缺失严重,但我也不能简单粗暴的把该变量扔掉,所以考虑到按各个区域分组,实现众数替补法。这里构建了两个自定义函数:

library(Hmisc)

stat.mode <- function(x, rm.na = TRUE){

if (rm.na == TRUE){

y = x[!is.na(x)]

}

res = names(table(y))[which.max(table(y))]

return(res)

}

my.impute <- function(data, category.col = NULL,

miss.col = NULL, method = stat.mode){

impute.data = NULL

for(i in as.character(unique(data[,category.col]))){

sub.data = subset(data, data[,category.col] == i)

sub.data[,miss.col] = impute(sub.data[,miss.col], method)

impute.data = c(impute.data, sub.data[,miss.col])

}

data[,miss.col] = impute.data

return(data)

}

house$建筑时间[house$建筑时间 == ‘'] <- NA

final_house <- subset(my.impute(house, ‘区域’, ‘建筑时间’),select = c(type.new,floow,面积,价格.W.,单价.平方米.,建筑时间))

final_house <- transform(final_house, builtdate2now = 2016-as.integer(substring(as.character(建筑时间),1,4)))

final_house <- subset(final_house, select = -建筑时间)

最终完成的干净数据集如下:

/pic/12_qYA9j4LmBZHOwlRBlmF3QozFPaRD8Q.png
接下来就可以针对这样的干净数据集,作进一步的分析,如聚类、线性回归等。

三、模型构建
这么多的房子,我该如何把它们分分类呢?即应该把哪些房源归为一类?这就要用到聚类算法了,我们就使用简单而快捷的k-means算法实现聚类的工作。但聚类前,我需要掂量一下我该聚为几类?根据聚类原则:组内差距要小,组间差距要大。我们绘制不同类簇下的组内离差平方和图,聚类过程中,我们选择面积、房价和单价三个数值型变量:

tot.wssplot <- function(data, nc, seed=1234){

#假设分为一组时的总的离差平方和

tot.wss <- (nrow(data)-1)*sum(apply(data,2,var))

for (i in 2:nc){

#必须指定随机种子数

set.seed(seed)

tot.wss[i] <- kmeans(data, centers=i, iter.max = 100)$tot.withinss

}

plot(1:nc, tot.wss, type=“b”, xlab=“Number of Clusters”,

ylab=“Within groups sum of squares”,col = ‘blue’,

lwd = 2, main = ‘Choose best Clusters’)

}

standrad <- data.frame(scale(final_house[,c(‘面积’,‘价格.W.’,‘单价.平方米.')]))

myplot <- tot.wssplot(standrad, nc = 15)

/pic/13_icBU17NPpEAVp86O03gtzoTnaHgGlg.png
当把所有样本当作一类时,离差平方和达到最大,随着聚类数量的增加,组内离差平方和会逐渐降低,直到极端情况,每一个样本作为一类,此时组内离差平方和为0。从上图看,聚类数量在5次以上,组内离差平方降低非常缓慢,可以把拐点当作5,即聚为5类。

set.seed(1234)

clust <- kmeans(x = standrad, centers = 5, iter.max = 100)

table(clust$cluster)

/pic/14_PBbbC7HtFY2z0iaYHfYDq1J3qq01Uw.png

table(final_house$区域,clust$cluster)

/pic/15_iazvicVJhibUHezIIYs1rPRtpd4uew.png

aggregate(final_house$面积, list(final_house$type.new), mean)

/pic/16_RSsRibZwpID4kNEqTELI5GeTZ9eDbA.png

aggregate(final_house[,3:5], list(clust$cluster), mean)

/pic/17_XUwO6rnN2jUhJhXy4AKkewibCAVE3A.png

从平均水平来看,我大体可以将28000多套房源合成为如下几种说法:

**a、大户型(3室2厅、4室2厅),属于第2类。**平均面积都在130平以上,这种大户型的房源主要分布在青浦、黄埔、松江等地(具体可从各类中的区域分布图可知)。

**b、地段型(房价高),属于第1类。**典型的区域有黄埔、徐汇、长宁、浦东等地(具体可从各类中的区域分布图可知)。

**c、大众蜗居型(面积小、价格适中、房源多),属于第4和5类。**典型的区域有宝山、虹口、闵行、浦东、普陀、杨浦等地

**d、徘徊型(大户型与地段型之间的房源),属于第3类。**典型的区域有奉贤、嘉定、青浦、松江等地。这些地区也是将来迅速崛起的地方。

p <- ggplot(data = final_house[,3:5], mapping = aes(x = 面积,y = 单价.平方米., color = factor(clust$cluster)))

p <- p + geom_point(pch = 20, size = 3)

p + scale_colour_manual(values = c(“red”,“blue”, “green”, “black”, “orange”))

/pic/18_gm2s8WacT1HXdrmy71zYW4dTfSA1SA.png

接下来我想借助于已有的数据(房价、面积、单价、楼层、户型、建筑时长、聚类水平)构建线性回归方程,用于房价因素的判断及预测。由于数据中有离散变量,如户型、楼层等,这些变量入模的话需要对其进行哑变量处理

final_house$cluster <- factor(clust$cluster)

final_house$floow <- factor(final_house$floow)

final_house$type.new <- factor(final_house$type.new)

factors <- names(final_house)[sapply(final_house, class) == ‘factor’]

formula <- f <- as.formula(paste('~’, paste(factors, collapse = ‘+')))

dummy <- dummyVars(formula = formula, data = final_house)

pred <- predict(dummy, newdata = final_house)

head(pred)

/pic/19_aqF663AhV5QAAmSkHSwWfwFnj2bVnQ.png

final_house2 <- cbind(final_house,pred)

model.data <- subset(final_house2,select = -c(1,2,3,8,17,18,24))

fit1 <- lm(价格.W. ~ .,data = model.data)

summary(fit1)

/pic/20_cJzgmVGjo2XTFVoDfIHxzLGtC5dacA.png

从体看上去还行,只有建筑时长和2室0厅的房型参数不显著,其他均在0.01置信水平下显著。不要赞赞自喜,我们说,使用线性回归是有假设前提的,即因变量满足正态或近似于正态分布,前面说过,房价明显在样本中是偏态的,并不服从正态分布,所以这里使用COX-BOX变换处理。根据COX-BOX变换的lambda结果,我们针对y变量进行转换,即:

/pic/21_gYQ0tib86kaHibmlvXSs1icZvbZTvw.jpg

library(car)

powerTransform(fit1)

/pic/22_ZEyhR3p6zXfkic5nWXmj2dHtys82DA.png

根据结果显示,0.23非常接近上表中的0值,故考虑将二手房的价格进行对数变换。

fit2 <- lm(log(价格.W.) ~ .,data = model.data)

summary(fit2)

/pic/23_QXTogjIofbHNTg7ZEeJYlBk7Tia8bw.png
这次的结果就明显比fit1好很多,仅有楼层的中区在0.1置信水平下显著,其余变量均在0.01置信水平下显著,而且调整的R方值也提高到了94.3%,即这些自变量对房价的解释度达到了94.3%。

最后我们再看一下,关于最终模型的诊断结果:

opar <- par(no.readonly = TRUE)

par(mfrow = c(2,2))

plot(fit2)

par(opar)

/pic/24_y93VgpoIWOljqibqAOYGuFqaEZIWPw.png
从上图看,基本上满足了线性回归模型的几个假设,即:残差项服从均值为0(左上),标准差为常数(左下)的正态分布分布(右上)。基于这样的模型,我们就可以有针对性的预测房价啦~

今天的学习过程就到这里,如果有疑问可以给我留言或者加微信(lsx19890717)详聊。本文中的爬虫代码、R语言脚本和数据均可在如下链接中获取:

链接: http://pan.baidu.com/s/1c1BFhXe 密码: 36dm

/pic/25_HwC7kO7sftKzwTAYUSs2DlOtrnDEqg.png

Petertang2017-03-01 08:50:39

预测房价的回归分析里有 单价 和 面积 两个变量啊。

Nina2017-03-01 18:20:02

非常棒的案例!在真实的商业背景下进行数据建模分析,很受教!希望以后有更多这样的案例学习/强/强/抱拳

曹淇淞Whale2017-03-01 11:32:19

不明觉厉

Joy 蒋2017-03-16 05:46:58

哇!如果用 Python 爬虫去Bloomberg 数据库里,岂不是可以建起企业数据库了?是否可以处理文字型数据呢?比如,从公司年报抓取关键词?

小明2017-03-02 11:24:00

学习了,膜拜大神

追梦赤子心2017-03-01 13:22:04

Mac.2017-03-01 10:47:28

干货!

李开心就好2017-03-01 08:18:03

好厉害啊 新技能get